Department: Metallurgical and	
Materials Engineering	
Course Name: Foundry Technology	
L-T-P: 3-1-0	
Approved on:	

Pre-requisite course:

Syllabus

Patterns: Functions, classification, materials, allowances and design considerations. Molding sands: General characteristics, ingradients, special additives, binders, their effect on the properties of mouldingsand, parting and facing materials, Cores and their types. Casting processes: Sand mould casting, shell mould, CO₂mould

Casting, centrifugal and investment casting, gravity die-casting and pressure die casting.

Solidification of castings. Gating and risering: basic requirements of gating and feeding system, design of gating system, types of gates, design of feeders, use of exothermic compounds, exothermic sleeves, chills and padding.

Melting furnaces: Selection of remelting furnace, simple sketch and brief description of gas fired and electric furnaces for melting of alloys. Cast iron foundry practice: Cupola melting practice, production of SG cast iron.

Melting practice for Al, Mg and Cu. Casting defects: causes and remedies.

Quality control in foundry.

- 1. R.W. Heine, C.R. Loper, P.C. Rosenthal, Principles of Metal Casting, Tata McGraw Hill Pub. Co. Ltd., New Delhi
- 2. P.L. Jain, Principles of foundry Technology, Tata McGraw Hill Co.Ltd., New Delhi.
- 3. P.L. Jain, Tool Engineering for Metal Casting Processes, Tata McGraw Hill Co. Ltd., New Delhi.
- 4. H.F. Taylor, M.C. Flemings, J. Wulf, Foundry Engineering, Wiley Eastern Ltd., Delhi.
- 5. Foundry Technology, D.Kumar&S.K.Jain, CBS, Publishers, New Delhi.
- 6. P.C. Mukherjee, Fundamentals of Metal Casting Technology, Oxford & 1BH Pub. Co. Pvt. Ltd., New Delhi.

UG	Department: Metallurgical and	
	Materials Engineering	
Course Code:MTT-303	Course Name: Particulate Materials	
Credit:4	L-T-P: 3-1-0	
Version:	Approved on:	

Pre-requisite course:

Syllabus

Introduction & Historical background of powder metallurgy. Powder Production: General principles of mechanical, chemical, atomization and electrolytic method of metal and alloy powders production. Powder Characterization: Chemical composition, Microstructure, size and size distribution, shape, surface area, flow rate, apparent andtape density. Compressibility, pyrophoricity and toxicity of metallic powders. Powder conditions: Annealing, mixing and blending and their mechanics, powder mixers. Cold compaction: Compaction in rigid dies, uniaxial and biaxial compaction, mechanical and hydraulic presses. Hot compaction: Hot pressing, extrusion and powder forging.

Sintering: Basic stages of sintering and mechanisms involved, liquid phase sintering, sintering furnaces, sintering atmospheres. Applications: Porous PM parts viz. bushes, filters, and bioimplants, dispersion strengthened materials, cemented carbides.

- 1. J.S. Hirbchorn Introduction to Powder Metallurgy (APMI)
- 2. R.M. German Powder Metallurgy Science (MPIF)
- 3. F.V. Lenel Powder Metallurgy: Principles & Applications (MPIF)
- 4. A.K. Sinha Powder Metallurgy
- 5. R.H.T. Dixon & A. Clayton Powder Metallurgy for Engg.(Brighton)

UG	Department: Metallurgical and	
	Materials Engineering	
Course Code:MTT-305	Course Name: Non-Ferrous Extractive	
	Metallurgy	
Credit:4	L-T-P: 3-1-0	
Version:	Approved on:	
Due requisite course.	•	

Pre-requisite course:

Syllabus

Aluminium: Occurrence of Bauxite, Bayer's process for production of alumina. Alternatives to Bayer's Process. Hall-Heroult Process-Conventional and New Materials for construction of Aluminium reduction cell, Nature of electrolyte, Electrolysis of alumina with emphasis on physicochemical principles and secondary-reactions. Factors affecting current efficiency. Alternatives to Hall-Heroult Process. Refining of Aluminium.

Copper: Occurrence of copper ores. Roasting, Matte smelting, converting and refining process as applied to copper production and their physico-chemical aspects. Single step and multistep continuous processes. Hydrometallurgical process for production of primary copper. Recovery of copper from copper slag. Treatment of refractory copper ores. Nickel & Cobalt: Occurrence of Nickel & cobalt Ores. Pyrometallurgical & Hydrometallurgical techniques for Nickel and Cobalt production and refining. Lead and Zinc: Occurrence of Lead and Zinc ores. Pyrometallurgical and Hydrometallurgical Processes for lead and zinc production and their physico-chemical aspects. Refining of lead and zinc , Recovery of by products.

- 1. Extractive Met. Of Copper Biswas&Daven Port
- 2. Extraction of Non-ferrous Metals Ray/Shridhar
- 3. Non-ferrous Extractive Metallurgy Bray

UG	Department: Metallurgical and	
	Materials Engineering	
Course Code:MTT-307	Course Name: Electrometallurgy &	
	Corrosion	
Credit:4	L-T-P: 3-1-0	
Version:	Approved on:	

Pre-requisite course:

Syllabus

Principles: Faradays' laws of electrolysis, current efficiency, current density, electrode potentials, EMF series, Galvanic series, Nernst Equation, Polarisation, Mixed potential theory, Pourbaix-pH diagrams, passivity- theory & applications. Electrodeposition: Classification and mechanism of electrodeposition processes. Electroplating of copper, Nickel and Chromium. Alloy plating and electrolessplating. Corrosion: The relevance of corrosion studies, forms of corrosion, Uniform, Galvanic, Crevice, Pitting, intergranular, stress corrosion cracking, corrosion fatigue, hydrogen embrittlement, Dealloying. Corrosion prevention and control by various methods- change ofmetal composition, design improvement, inhibitors, coatings and electrochemical methods of protection.

- 1. An introduction to metallic corrosion & its prevention by Rajnarain
- 2. Corrosion Engineering by Mars G. Fontana
- 3. Electroplating by Lowenheim

UG	Department: Metallurgical and	
	Materials Engineering	
Course Code:MTT-309	Course Name: Solid State Phase	
	Transformation	
Credit:4	L-T-P: 3-1-0	
Version:	Approved on:	

Pre-requisite course:

Syllabus

Nucleation and growth. Pearlitic, bainitic and martensitic transformations. Massive transformation, spinodaldecompositon. Order-disorder transformation Equilibrium phases, Metastable phases. Intermetallic compounds, Phase equilibria.

- 1. Physical Metallurgy Principles, Robert E. Reed Hill, East-west Press, DvanNostrandcompny, New York.
- 2. Solid State Phase Transformations, V. Raghavan
- 3. An Introduction to Metallurgy, A.H.Cottrell

UG	Department: Metallurgical and	
	Materials Engineering	
Course Code:MTP-311	Course Name:Powder Metallurgy	
Credit:2	L-T-P: 0-0-3	
Version:	Approved on:	
Dro roquisito courso:	'	

Pre-requisite course:

Syllabus

- 1. Sampling metal powder
- 2. Determination of hydrogen loss for metal powder
- 3. Determination of acid insoluble in Cu powder
- 4. Determination of sieve analysis of metal powders
- 5. Determination of flow rate of free flowing metal powders using Hall flow meter
- 6. Determination of apparent density of free flowing metal powders using Hall Flow Meter
- 7. Determination of green strength for un-sintered P/M compact
- 8. Determination of compressibility of metal powder
- 9. Determination of density of compacted or sintered P/M product
- 10. Determination of tensile properties of P/M product

UG	Department: Metallurgical and
	Materials Engineering
Course Code:MTP-313	Course Name:Foundry
Credit:2	L-T-P: 0-0-3
Version:	Approved on:
Dro roquisito sourso:	<u> </u>

Pre-requisite course:

Syllabus

- 1. Determination of basic properties of molding sand
- 2. Effect of varying moisture and clay content on permeability
- 3. Green compressive strength and shatter index of moulding sand
- 4. To find out grain fineness no. of silica sand
- 5. Melting and casting of Al-Si alloys & to study the effect of grain refinement and modifier
- 6. Casting defects and their remedial measures
- 7. Techniques to improve the efficiency of furnace
- 8. To study the recent modifications in cupola furnace

UG	Department: Metallurgical and	
	Materials Engineering	
Course Code:MTP-315	Course Name:Electrometallurgy and	
	Corrosion	
Credit:2	L-T-P: 0-0-3	
Version:	Approved on:	
Due ve avrieite ee vae	<u> </u>	

Pre-requisite course:

Syllabus

- 1. Electroless deposition of Ag/ Ni/ Cu
- 2. Electroplating of Cu, Ni, Cr, Zn
- 3. Anodizing of Al utilizing H2SO4 and Oxalic acid bath
- 4. Thickness measurement of coatings
- 5. Use of inhibitors and study of its effect
- 6. Study of Cathodic protection
- 7. Galvanic series formation of important alloys
- 8. Corrosion rate determination using Weight loss measurement in acidic media
- 9. Corrosion rate determination using Weight loss measurement in alkaline media
- 10. Polarization experiment/ Study of Tafel plot
- 11. Basic study of electrochemical Impedance Spectroscopy