

IV Semester:

S. No.	Course Code	Course Title	Category	Туре	Credit	L	Т	Р
1.	22CHT251	Chemical Reaction Engineering-I	PC	Theory	4	3	1	0
2.	22CHT253	Heat Transfer Operations	PC	Theory	4	3	1	0
3.	22CHT255	Mass Transfer-I	PC	Theory	4	3	1	0
4.	22CHT254	Industrial Pollution Abatement	PC	Theory	4	3	1	0
5.	22CHT252	Chemical Technology	PC	Theory	4	3	1	0
6.	22RET291	Energy Storage*	PL/EAS	Theory	3	3	0	0
7.	22CHP256	Chemical Reaction Engineering Lab	PC	Lab	1	0	0	2
8.	22CHT257	Heat Transfer Operations Lab	PC	Lab	1	0	0	2
9.	22CHP258	Industrial Pollution Abatement Lab	PC	Lab	1	0	0	2
		Total			26	18	5	6

*To be taught by Centre for Energy and Environment

SEMESTER – IV

Course Title: Chemical Reaction Engineering-I

- 2. Contact Hours: L: 3 T: 1 P: 0
- 3. Credits: 4 Semester: IV
- 4. Pre-requisite: Nil.
- 5. Course Objective: To understand the kinetics of single and multiple reactions and the effect of temperature on reaction systems along with the RTD and reactor model.
- 6. Course Outcomes: Upon completion of this course, the students will be able to:
 - i. Develop rate laws for homogeneous reactions.
 - ii. Analyze batch reactor data by integral and differential methods.
 - iii. Design ideal reactors for homogeneous single and multiple reactions.
 - iv. Understand the RTD flow behaviour model
 - v. Demonstrate the temperature effect on reaction rate and design non-isothermal reactors.
- 7. Details of Course:

Unit	Contents	
No.		Hours
1.	Introduction and Kinetics of Homogeneous Reaction: Rate of	8
	Reaction, Elementary and non-elementary homogeneous reactions,	
	Molecularity and order of reaction, Mechanism of reaction, temperature	
	dependency from thermodynamics, collision and activated complex	
	theories.	
2.	Interpretation of Batch Reactor Data: Integral and differential	8
	methods for analyzing kinetic data., constant volume reactor for zero,	
	first, second and third order reactions, half-life period, irreversible	
	reaction in parallel and series, catalytic reaction, auto catalytic reaction,	
	reversible reactions, Variable volume batch Reactor for zero, first and	
	second order reactions. Temperature and Reaction Rate.	
3.	Introduction to Reactor Design: Ideal reactors for single reaction:	8
	Ideal batch reactor, steady state Mixed Flow Reactor, steady state PFR,	
	Holding time and space time for flow systems. Design equation for	
	batch, continuous stirred tank, plug flow reactors for isothermal	
	reaction. Design for single reactions: Optimum reactor size, Size	
	comparison, multiple reactor systems, recycle reactor, auto catalytic	
	reactions. Design for multiple reactions: Reactions in parallel, reactions	
	in series, series- parallel reactions.	
4.	Residence Time Distribution: Residence time distribution of fluids in	8
	vessels, E, F and C curves, Dispersion model, Tank in series model. Non	
	Isothermal PFR and CSTR, Safety issues in Non Isothermal Reactors.	
5.	Temperature and pressure effects on reaction: Single reactions: Heat	6
	of reaction, equilibrium constants, graphical design procedure, optimum	
	Product distribution and temperature	
	rioduct distribution and temperature.	

(A) Text Books

S.No.	Authors / Name of Book / Publisher	Year of
		Publication
1	Levenspiel, O., "Chemical Reaction Engineering", 3 rd Ed., John Wiley & Sons, Singapore.	2006
2	Fogler, H. S., "Elements of Chemical Reaction Engineering," 5 th Ed., Prentice Hall of India.	2016

S.No.	Authors / Name of Book / Publisher	Year of
		Publication
1	Keith J. Laidler, "Chemical Kinetics" 3rd Edition, Pearson.	2003
2	Smith, J. M., "Chemical Engineering Kinetics", 3 rd Ed. McGraw	1981
	Hill.	
3	Richardson, J.F., and Peacock D.G., "Coulson and Richardson's	1998
	Chemical Engineering," vol. 3, 3 rd Ed., Asian Books Pvt. Ltd.,	
	New Delhi.	

Course Title: Heat Transfer Operations

- 2. Contact Hours: L:3 T:1 P:0
- 3. Credits: 4 Semester: IV
- 4. Pre-requisite: Nil.
- 5. Course Objective: To understand the fundamentals of heat transfer mechanisms in fluids and solids and their applications in various heat transfer equipment in process industries
- 6. Course Outcomes: Upon completion of this course the students will be able to:
 - i. Understood the basic fundamentals of heat transfer and also various mode of heat transfer along with governing laws and for extended surfaces.
 - ii. Understood the concept of heat transfer coefficient and its calculation for natural and forced convection using various empirical correlations.
 - iii. Understood concept of boiling and condensation phenomenon and correlation for the various heat transfer coefficient.
 - iv. Design heat exchanger for different applications in a chemical process plant.

7. Details of Course:

Unit	Contents	Contact
No.		Hours
1.	Introduction: Modes of heat transfer: conduction, convection, radiation.	8
	Steady-State Conduction in One Dimension: Fourier's Law, thermal	
	conductivity, steady-state conduction of heat through a composite solid,	
	cylinder and sphere. Steady-state heat conduction in bodies with heat	
	sources: plane wall, cylinder and sphere.	
	Unsteady-State Heat Conduction: Mathematical formulations and initial	
	and boundary conditions. Analytical solution, numerical solution.	
2.	Heat Transfer Coefficient: Convective heat transfer and the concept of	8
	heat transfer coefficient, overall heat transfer coefficient, heat transfer from	
	extended surfaces, thermal contact resistance, critical insulation thickness,	
	optimum insulation thickness.	
	Forced Convection: Flow over a flat plate, thermal boundary layer, flow	
	across a cylinder. Dimensional analysis: Buckingham Pi theorem,	
	Dimensional groups in heat transfer. Correlations for the heat transfer	
	coefficient: Laminar flow through a circular pipe, turbulent flow through a	
	circular pipe, flow through a non-circular duct, flow over flat plate, flow	
	across a cylinder, flow past a sphere, flow across a bank of tubes, heat	
	transfer coefficient in a packed and fluidized bed.	
	Double-pipe heat exchanger in parallel and counter-current flow.	
3.	Free Convection: Introduction, heat transfer correlations for free	6
	convection: flat surface, cylinder, sphere, enclosure. Combined free and	
	forced convection.	
	Boiling and Condensation: Boiling phenomenon, nucleate boiling,	
	Correlations for pool boiling heat transfer: Nucleate boiling, critical heat	
	flux, stable film boiling. Forced convection boiling, condensation	
	phenomena, film condensation on a vertical surface, turbulent film	

	condensation, condensation outside a horizontal tube and tube bank.	
	Condensation inside a horizontal tube, effect of non-condensable gases.	
	Dropwise condensation.	
4.	Radiation Heat Transfer: Basic concepts of radiation from a surface:	6
	black body radiation, Planck's Law, Wien's Displacement Law, Stefan-	
	Boltzmann Law, Kirchoff's Law, Gray body. Radiation intensity of a black	
	body, spectral emissive power of a black body over a hemisphere.	
	Radiation heat exchange between surfaces – the view factor. Radiation	
	exchange between black bodies and between diffuse gray surfaces.	
5.	Evaporators: Types of evaporators: Natural-circulation evaporators,	6
	forcedcirculation evaporators, falling film evaporators, climbing-film	
	evaporators, agitated thin-film evaporators and plate evaporators.	
	Principles of evaporation and evaporators; Single and multiple effect	
	evaporators, Capacity and economy, Boiling point rise, heat transfer	
	coefficient enthalpy of a solution. Calculations of a single effect	
	evaporator.	
6.	Heat Exchangers: Construction of a shell-and-tube heat exchanger,	8
	fouling of a heat exchanger, LMTD, temperature distribution in multi-pass	
	heat exchangers, individual heat transfer coefficients. Types of shell-and-	
	tube heat exchanger. Design of different type of heat exchangers.	

(A) Text Books

S.No.	Authors / Name of Book / Publisher	Year of
		Publication
1	Dutta, B. K. "Heat transfer: Principles and Applications", PHI, New	2001
	Delhi	
2	Kern, D. Q., "Process Heat Transfer", Tata- McGraw Hill	1950

S.No.	Authors / Name of Book / Publisher	Year of
		Publication
1	Holman, J. P., "Heat Transfer", McGraw Hill, 10 th Ed. New York	2017
2	Chapman, A. J., "Heat Transfer", Maxwell Macmillan	1984

Course Title: Mass Transfer I

- 2. Contact Hours: L:3 T:1 P:0
- 3. Credits: 4 Semester: IV
- 4. Pre-requisite: NIL

5.Course Objective: To introduce the undergraduate students with the most important separation equipment in the process industry, and provide proper understanding of various mass transfer operations.

6. Course Outcome: Upon completion of this course, the students will be able to:

- i. Solve problems related to diffusion and inter-phase mass transfer, mass transfer theories and mass transfer equipment.
- ii. Perform design calculation related to absorption (plate and packed column)
- iii. Solve problems related to binary and multi-component distillation

7. Details of Course:

Unit	Contents	
No.		Hours
1.	Basics of Mass Transfer: Physico-chemical basis of separation processes-	
	thermodynamic considerations, Chemical Potential, stage and continuous	4
	contacting operations, concepts of equilibrium stage, operating line and tie	
	line. Liver Rule. Introduction to Membrane Separation Processes.	
2.	Diffusion: Molecular and turbulent diffusion, diffusion coefficient, Fick's	10
	Law of diffusion, dependence of diffusion coefficient on temperature,	
	pressure and composition; measurement and estimation of diffusivity.	
	Diffusion in multi-component gas mixtures. Diffusion in Solids: Molecular,	
	Knudsen &surface diffusion; Inter- phase mass transfer: Mass transfer	
	coefficients, Laminar and turbulent flow situations and Correlations,	
	Diffusion between phases, Equilibrium solubility of gases in liquids,	
	Various Mass transfer theories, Mass transfer in fluidized beds, Flow past	
	solids and boundary layers, Simultaneous heat and mass transfer.	
3.	Absorption and Stripping:Equipment, Gas-liquid equilibria, Henry's	8
	law, Selection of solvent, Absorption in tray column, Graphical and	
	analytical methods, Absorption in packed columns, HTU, NTU & HETP	
	concepts, Design equations for packed column, Absorption with chemical	
	reaction and mass transfer.	
4.	Distillation: Basic fundamentals of distillation, Ideal and non- ideal	18
	stages; definitions of point, stage and column efficiencies Pressure-	
	composition, Temperature-concentration, Enthalpy-concentration diagrams	
	for ideal and non-ideal solutions, Raoult's law and its application,	
	Maximum and minimum boiling mixtures, concept of relative volatility,	
	Single Stage Distillation Differential distillation, Flash vaporization,	
	Vacuum, molecular and steam distillation. McCabe-Thiele method;Plate	
	calculations, simple and complex fractionators. Ponchon-Savarit method,	
	Multi-component	
	distillation (short-cut and MESH method), Azeotropic and extractive	

(A) Text Books

S.No.	Authors / Name of Book / Publisher	Year of
		Publication
1	Treybal, R "Mass Transfer Operations", 3 rd Ed.NewYork:	1981
	McGraw-Hill.	
2	Sherwood T. K., Pigford R. L. and Wilke P. "Mass Transfer"	1975
	McGraw-Hill.	
3	Geankoplis, CJ, "Transport Processes and Unit Operations", 4 th	2013
	Ed. Prentice Hall.	
4	B K Dutta, Principles of Mass Transfer and Separation Processes,	2007
	PHI Learning.	

S.No.	Authors / Name of Book / Publisher	Year of
		Publication
1	Foust A.S., Wenzel, L.A., Clump, C.W., Maus, L., Anderseny,	2008
	L.B., "Principles of Unit Operations" 2 nd Ed., John Wiley.	
2	King, C. J., "Separation Processes", 2 nd Ed. McGraw-Hill, NY.	2013
3	Smith, B. D., "Design of Equilibrium Stage Processes", McGraw-	1963
	Hill, NY.	
4	McCabe, W. L., Smith, J. C. and Harriot, P., "Unit Operations of	2017
	Chemical Engineering", 7 th Ed., McGraw-Hill, NY.	
5	Coulson, J. M. and Richardson, J. F., "Chemical Engineering",	1999
	Vol. I and II, 6 th Ed., Elsevier.	

Course Title: Industrial Pollution Abatement

- 2. Contact Hours: L:3 T:1 P:0
- 3. Credits: 4 Semester: IV
- 4. Pre-requisite: Nil.

5. Course Objective: To provide concepts of water and air pollution, related legislation, pollution abatement and solid waste management

6. Course Outcomes: Upon completion of this course, the students will be able to:

- i. Quantify and analyze the pollution load
- ii. Analyze/design of suitable treatment operation for wastewater
- iii. Model the atmospheric dispersion of air pollutants and design of air pollution control devices
- iv. Analyze the characteristics of solid waste, its handling &management
- v. Gained knowledge of the Environmental legislation and standards
- 7. Details of Course:

Unit	Contents	Contact
No.		Hours
1.	Wastewater Treatment: Characterization of Industrial wastewater,	16
	primary, secondary and tertiary treatment, segregation, screening,	
	equalization, Disinfection, coagulation, flocculation, precipitation,	
	flotation, sedimentation, aerobic and anaerobic treatment, Design of	
	activated sludge system, absorption, ion exchange, membrane filtration,	
	electrodialysis, sludge dewatering and disposal methods.	
2.	Air Pollution Control: Sources and classification of air pollutants,	12
	nature and characteristics of gaseous and particulate pollutants,	
	pollutants from automobiles. Air pollution meteorology, plume and its	
	behavior and atmospheric dispersion, control of particulate emissions by	
	gravity settling chamber, cyclones, wet scrubbers, bag filters and	
	electrostatic precipitators. Control of gaseous emissions by absorption,	
	adsorption, chemical transformation and combustion.	
3.	Solid Waste Management: Hazardous and non-hazardous waste,	8
	methods of treatment and disposal, land filling, leachate treatment and	
	incineration of solid wastes.	
4.	Legislation, standards for water and air, Environmental regulatory	4
	legislations and standards	

(A) Text Books

S.No.	Authors / Name of Book / Publisher	Year of
		Publication
1	Peavy, H. S., Rowe, D. R., Tchobanoglous, G., "Environmental	1985
	Engineering"; McGraw Hill.	
2	Masters, G.M., "Introduction to Environmental Engineering and	1991
	Science", 3 rd Ed. Prentice Hall.	
3	Metcalf & Eddy, Inc., "Wastewater Engineering: Treatment and	2003
	Reuse", 4 th Ed., Tata McGraw Hill, New Delhi.	

S.No.	Authors / Name of Book / Publisher	Year of
		Publication
1	De Nevers, N., "Air Pollution Control Engineering", 2 nd Ed.,	1999
	McGraw-Hill.	
2	Mahajan, S. P., "Pollution Control in Process Industries," Tata	1985
	McGraw-Hill, New Delhi.	
3	Modi, P. N., "Sewage Treatment and Disposal and Waste Water	2020
	Engineering," Vol. II, 17 th Ed. Standard Book House, Delhi.	

Course Title: Chemical Technology

- 2. Contact Hours: L:3 T: 1 P: 0
- 3. Credits: 4 Semester: IV
- 4. Pre-requisite: Studied unit processes and unit operations courses prescribed in Chemical Engineering syllabus

5. Course objective: To study process technologies of various organic and inorganic process industries

6. Course Outcome: Upon completion of this course, the students will be able to:

- i. Understand the processes involved in manufacturing of various inorganic and organic chemicals
- ii. Prepare the process flow diagrams
- iii. Analyze important process parameters and engineering problems during production

7. Details of Course:

Unit	Contents	Contact
No.		Hours
1.	Introduction to Chemical Engineering: Unit operations and unit	2
	processes, functions of a Chemical Engineer, new emerging areas. Study	
	of the following chemical industries/processes involving process details,	
	production trends, thermodynamic considerations, material and energy	
	balances, flow sheets, engineering problems pertaining to materials of	
	construction, waste regeneration/recycling, and safety, environmental	
	and energy conservation measures.	
2.	Industrial Gases: Hydrogen, producer gas and water gas.	9
	Nitrogen Industries: Ammonia, nitric acid, nitrogenous and mixed	
	fertilizers.	
	Coal Conversion technologies	
3.	Chlor-Alkali Industries: Common salt, caustic soda, chlorine,	7
	hydrochloric acid, sodaash.	
4.	Sulphur Industries: Sulphuric acid, oleum.	6
	Cement Industries: Portland cement.	
5.	Agrochemicals: Important pesticides, BHC, DDT, Malathion.	7
	Alcohol Industries: Industrial alcohol, Absolute alcohol.	
6	Oils and Fats: Oils, Fats and Waxes, Soaps and Detergents.	9
	Pulp and Paper Industry	
	Sugar Industry	

(A) Text Books:

S No	Authors / Name of Pools / Publisher	Year of
5.INU.	Authors / Ivanie of Book / Fublisher	Publication
1	Rao, M.G. and Sittig, M., Dryden's Outlines of Chemical	1997
	Technology, Affiliated East West Press.	
2	Austin, G.T., Shreve's Chemical Process Industries, 5 th Ed., McGraw-	2017
	Hill.	

S.No.	Authors / Name of Book / Publisher	Year of
		Publication
1	Faith, W.L., Keyes, D.B. and Clark, R.L., Industrial Chemicals, 4 th Ed., John Wiley.	1975
2	Kirk-Othmer Encyclopedia of Chemical Technology, John Wiley and Sons, Inc.	2001

1. Subject Code: 22RET291Course Title: Energy Storage

(To be taught by Centre for Energy and Environment)

- 2. Contact Hours: L: 3 T: 0 P: 0
- 3. Credits: 3 Semester: IV
- 4. Pre-requisite: Nil
- 5. Course Objective:
 - CO1: To understand different aspects and parameters of energy storage.

CO2: To determine utilization, sizing, and operation of energy storage systems.

CO3: To solve energy storage system design problems.

6. Course Outcome: Upon completion of this course, the students will be able to:

- i. Select and size suitable energy storage systems for any application.
- ii. Compare and evaluate different energy storage systems.
- 7. Details of Course:

S. No.	Objectives	Contact
		Hours
1.	Introduction of energy storage technology, requirement for energy storage, Current status, storage services and benefits, cost performance and maturity of storage technology, methods and tools for evaluation of storage, future prospect of storage, policy and regulatory framework.	7
2.	Introduction to Electrochemical energy storage. Comparison, Ragone plot and state-of-art application, their function and deployments. Technical characteristics, introduction to battery states and their estimation methods, Performance characteristics, testing, safety, standards and system sizing, different electrochemical energy storage methods, flow battery, lead acid battery, characteristics of battery.	10
3.	Thermal energy storage (TES) methods Sensible TES, Latent TES, Thermochemical TES, Selection depending on the application. Types of storage systems Design and operation of thermal storage systems	8
4.	Hydrogen energy: hydrogen economy, Hydrogen based energy storage, hydrogen storage and transportation safety	6
5.	Mechanical energy storage systems, flywheel energy storage (FES), pumped hydropower storage (PHS), and compressed air energy storage (CAES). Comparison and application state of art including principle, function and deployments.	8

(A) Text Books

S.No.	Authors / Name of Book / Publisher	Year of
		Publication
1.	Large Energy Storage Systems Handbook Edited by Frank S. Barnes	2011
	Jonah G. Levine. Publisher CRC Press Taylor & Francis Group ISBN	
	9781138071964	
2.	Energy Storage Fundamentals, Materials and Applications Edited by	2016
	Robert Huggins. Publisher Springer ISBN: 978-3-319-21239-5	
3	Grid-Scale Energy Storage Systems and Applications Edited by Fu-	2019
	Bao Wu, Ji-Lei Ye, Bo Yang ISBN:9780128152935	

S.No.	Authors / Name of Book / Publisher	Year of
		Publication
1.	Compressed Hydrogen in Fuel Cell Vehicles: On-board Storage and	2022
	Refueling Analysis Edited by Shitanshu Sapre, Kapil Pareek, Rupesh	
	Rohan. CRC Press Taylor & Francis Group ISBN 9781032154893	
2.	US DOE Energy storage handbook	2013
	(https://www.sandia.gov/ess/publications/doe-oe-resources/eshb/doe-epri-	
	nreca)	
3	Advances in Batteries for Medium and Large-Scale Energy Storage Edited	2014
	by Maria Skyllas-Kazacos, Chris Menictas, T. M. LimISBN:9781782420224	

Course Title: Chemical Reaction Engineering Lab

- 2. Contact Hours: L:0 T:0 P:2
- 3. Credits: 1 Semester: IV
- 4. Pre-requisite: CHT XXX Chemical Reaction Engineering- I

5. Course Objective: Hands on practice on the study of kinetics of homogeneous and heterogeneous reactions using different reactors and RTD studies in different reactors6. Course outcome: Upon completion of this course, the students will be able to:

- i. Run various homogeneous and heterogeneous laboratory size reactors and to determine different kinetic parameters in Batch reactor, CSTR, CSTRs in series, Spinning basket reactor, Packed bed recycle reactor etc.
- ii. Development of practical skills leading to research initiatives
- 7. Details of Course:

Experiment	Objective	Contact
No.		Hours
1.	Study of a non-catalytic homogeneous reaction between	3
	sodium hydroxide and ethyl acetate in a BatchReactor and to	
	determine: (i) Order of reaction, (ii) Rate constant k, and (iii)	
	Effect of temperature on k and determineactivation energy E.	
2.	Study of a non-catalytic homogeneous reaction between	3
	sodium hydroxide and ethyl acetate ina Plug Flow Reactor	
	between and to determine: (i) Order of reaction and (ii) Rate	
	constant k	
3.	Study of a non-catalytic homogeneous reaction between	3
	sodium hydroxide and ethyl acetate ina series of three CSTRs	
	and to draw the performance chart for the reactor system and	
	evaluate the rateconstant at ambient temperature.	
4.	Study of a non-catalytic gas solid reaction for the	3
	decomposition of CaCO ₃ in air in a MuffleFurnace and to	
	record the decomposition-time data for calcination of CaCO ₃	
	particles and find out a suitablemodel for the reaction.	
5.	Characterization of the given sample of Adsorbent/Catalyst and	3
	to determine its (i) Bulkdensity and (ii) Pore volume	
6.	Study of the behaviour of a given CSTR/ Packed Bed Reactor/	3
	CSTRs in series by using pulseinput and step input of a tracer	
	and determine (i) Mean resistance time, (ii) Variance, (iii)	
	Dispersion no., and (iv) Dispersion coefficient.	
7.	Study of the kinetics of hydrolysis of ethyl acetate in a Packed	3
	Bed Recycle Reactor filled withion exchange resin and to	
	determine the effect of recycle ratio on the conversion.	
8.	Study heterogeneous catalytic hydrolysis of ethyl acetate using	3
	ion exchange resin in a SpinningBasket Reactor and	
	determine (i) Reaction rate constant (ii) Study the effect of	
	Mass Transfer.	

9.	Study of the kinetics of photo-catalytic oxidation of formic acid	3
	in a UV Reactor and to determine the rate constant of reaction.	
10.	Propose an experiment based on any of the existing	3
	experimental set up of CRE Lab. or a combination of the same.	
	Or Propose an experimental set up (with as much details as	
	possible) along with a suitable experiment, which is not	
	presently existing in CRE Lab.	

A) Text Books

S. No.	Authors / Name of Book / Publisher	Year of Publication
1	Levenspiel, O., "Chemical Reaction Engineering," 3 rd Ed., John Wiley.	2006
2	Fogler, H. S., "Elements of Chemical Reaction Engineering," 5 th Ed., Prentice-Hall of India, Delhi.	2016
3	Smith, J. M., "Chemical Engineering Kinetics," 3 rd Ed., McGraw- Hill.	1981

S.	Authors / Name of Book / Publisher	Year of
No.		Publication
1	Carberry, J. J., "Catalytic Reaction Engineering," McGraw-Hill.	1976
2	Levenspiel, O., "The Chemical Reactor Omnibook," OSU	1996
	Bookstores, Corvallis, Oregon.	

Course Title: Heat Transfer Operations Lab

1. Subject Code: 22CHT257

2. Contact Hours: L:0 T:0 P:2

- 3. Credits: 1 Semester: IV
- 4. Pre-requisite: Principles of Heat Transfer

5. Course Objective: To provide hands on experience on heat transfer operations and equipment

6. Course Outcome: Upon completion of this course, the students will be able to:

- i. Understand the principles of heat transfer
- ii. Understand the operations of various heat transfer equipments
- iii. Measure physical properties and heat transfer coefficient

7. Details of Course:

Experiment	Objective	
No.		Hours
1.	Study of Heat transfer by conduction in a metal bar	3
2.	Study of Heat transfer by conduction in a Composite metal wall	3
3.	Study of unsteady state heat transfer	3
4.	Determination of Thermal conductivity of Insulated Powder	3
5.	Study of Heat transfer by Natural convection	3
6.	Study of Heat transfer by Forced convection	3
7.	Study of Heat transfer in Agitated Vessel	3
8.	Determination of Emissivity of given material	3
9.	Study of Heat transfer in double pipe heat exchanger	3
10.	Study of Heat transfer in Shell and Tube heat exchanger	3
11.	Determination of heat transfer coefficient in boiling phenomenon	3
12.	Determination of heat transfer coefficient for Dropwise	3
	Condensation	
13.	Determination of heat transfer coefficient for Film wise	3
	Condensation	
14	Determination of thermal conductivity of liquids	3
15	Determination of critical heat flux from pool boiling apparatus	3

8.Books:

(A) Text **Books:**

S.No.	Authors / Name of Book / Publisher	Year of
		Publication
1	Dutta, B. K. "Heat transfer: Principles and Applications", PHI, New	2001
	Delhi, "Transport Phenomena", 2 nd Ed., Wiley.	
2	Kern, D. Q., "Process Heat Transfer", Tata- McGraw Hill,	1950

(B)	Authors / Name of Book / Publisher	Year of
Reference		Publication

Books S.No.		
1	Holman, J. P., "Heat Transfer", 10th Ed. McGraw Hill, New	2017
	York.	
2	Chapman, A. J., "Heat Transfer", Maxwell Macmillan.	1984

Course Title: Industrial Pollution Abatement Lab

- 2. Contact Hours: L:0 T:0 P:2
- 3. Credits: 1 Semester: IV
- 4. Pre-requisite: Nil.

5. Course Objective: Hands on practice to analysis the water and wastewater for some of their key parameters by standard methods and impart the practical skills leading to research initiatives.

6. Course outcome: Upon completion of this course, the students will be able to:

- i. Students got hands on practice of analyzing water and wastewater for some of their key parameters by standard methods.
- ii. Development of practical skills leading to research initiatives.

7. Details of Course.	7.	Details	of	Course:
-----------------------	----	---------	----	---------

Experiment	Objective	Contact
No.		Hours
1.	Determination of Total Solids (TS), Total Suspended Solids	3
	(TSS), and Total Dissolved Solids(TDS) of a given wastewater	
	sample.	
2.	Determination of Volatile Suspended Solids (VSS) and Fixed	3
	Suspended Solids (FSS) of a given water sample	
3.	Determination of pH, Electrical Conductivity (EC), and	3
	Turbidity of a given water sample.	
4.	Determination of Dissolved Oxygen (DO) of a given water	3
	sample byWinkler's method.	
5.	Determination of Chemical Oxygen Demand (COD) of a given	3
	water sample.	
6.	Determination of Oil and Grease in a given wastewater sample.	3
7.	Determination of Biological Oxygen Demand (BOD) of a given	3
	water/ wastewater sample.	
8.	Determination of Available Chlorine in a given sample of	3
	Bleaching Powder	
9.	Propose an experiment consistent with the theory subject of	3
	IPA and for which infrastructure is available in IPA Lab. giving	
	complete details (as given in IPA Lab practical	
	instructionsheet).	
10.	Some real lifeproblem based on the course content of Industrial	3
	Pollution Abatement. Theproblem should have application of	
	Numerical methods and/or statistics. Select a problemfrom	
	journal research paper/ text book of the subject. The project	
	must have some contribution of the team commensurate with	
	the level of the Class.	
11.	Propose an experiment consistent with the theory subject of	3
	IPA and for which infrastructureneeds to be arranged in IPA	
	Lab. giving complete details (as given in IPA Lab	

	practicalinstruction sheet)	
12.	Estimation of Settling Property using Jar Test	3
13.	Estimation Water Turbidity	3

(A) Text Books

S.No.	Authors / Name of Book / Publisher	Year of
		Publication
1	Clesceri, L. S., Greenberg, A. E., Eaton, A. D. (Eds.),"Standard	1998
	Methods forWater and Wastewater Analysis", 20thEd., American	
	Public Health Association(APHA), Washington.	

S.No.	Authors / Name of Book / Publisher	Year of
		Publication
1	Maiti, S. K., "Handbook of Methods in Environmental Studies", Vol. I,	2001
	ABD Publishers, Jaipur.	
2	Mathur, R. P., "Water and Wastewater Testing (Laboratory Manual)",	2005
	4 th Ed., Nemchand and Brothers, Roorkee.	